Electrical physiological evidence for highand low-affinity vagal CCK-A receptors.

نویسندگان

  • Ying Li
  • Jinxia Zhu
  • Chung Owyang
چکیده

We have demonstrated that under physiological conditions CCK acts through vagal high-affinity CCK-A receptors to mediate pancreatic secretion. In this study, we evaluated the vagal afferent response to endogenous CCK in rats and defined the CCK-receptor affinity states and the vagal-receptive field responsive to CCK stimulation using electrophysiological studies. Experiments were performed on anesthetized rats prepared with bile-pancreatic fistula. Plasma CCK levels were elevated by diverting bile-pancreatic juice (BPJ). The single-unit discharge of sensory neurons supplying the gastrointestinal tract was recorded from the nodose ganglia. All units studied were either silent or they had a very low resting discharge frequency. Thirty-two single units were studied extensively; seven were shown to be stimulated by diversion of BPJ (2.6 ± 2 impulses/min at basal to 40 ± 12 impulses/min after diversion). Acute subdiaphragmatic vagotomy or perivagal capsaicin treatment abolished the response. The CCK-A-receptor antagonist CR-1409, but not the CCK-B antagonist L-365260, blocked the vagal response to endogenous CCK stimulation. Infusion of the low-affinity CCK-receptor antagonist CCK-JMV-180 completely blocked the vagal afferent response to the diversion of BPJ in three of seven rats tested but had no effect on the response in the remaining four. In a separate study, we demonstrated that gastric, celiac, or hepatic branch vagotomy abolished the response in different subgroups of neurons. In conclusion, under physiological conditions, CCK acts on both high- and low-affinity CCK-A receptors present on distinct vagal afferent fibers. The vagal CCK-receptor field includes the regions innervated by the gastric, celiac, and hepatic vagal branches. This study provides electrophysiological evidence that vagal CCK receptors are present on the vagal gastric, celiac, and hepatic branches and may occur in high- and low-affinity states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AGI August 40/2

Li, Ying, Jinxia Zhu, and Chung Owyang. Electrical physiological evidence for highand low-affinity CCK-A receptors. Am. J. Physiol. 277 (Gastrointest. Liver Physiol. 40): G469–G477, 1999.—We have demonstrated that under physiological conditions CCK acts through vagal high-affinity CCK-A receptors to mediate pancreatic secretion. In this study, we evaluated the vagal afferent response to endogen...

متن کامل

Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones.

Recent studies indicate that cholecystokinin (CCK) and serotonin (5-hydroxytryptamine, 5-HT) act via vagal afferent fibres to mediate gastrointestinal functions. In the present study, we characterized the interaction between CCK and 5-HT in the vagal primary afferent neurones. Single neuronal discharges of vagal primary afferent neurones innervating the duodenum were recorded from rat nodose ga...

متن کامل

Characterization of CCK(A) receptor affinity states and Ca(2+) signal transduction in vagal nodose ganglia.

CCK(A) receptors are present on vagal afferent fibers. The objectives of this study were to identify the presence of high- and low-affinity CCK(A) receptors on nodose ganglia and to characterize the intracellular calcium signal transduction activated by CCK. Stimulation of acutely isolated nodose ganglion cells from rats with 1 nM CCK-8 primarily evoked a Ca(2+) transient followed by a sustaine...

متن کامل

Low-affinity CCK-A receptors are coexpressed with leptin receptors in rat nodose ganglia: implications for leptin as a regulator of short-term satiety.

The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discha...

متن کامل

Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats.

Vagal CCK-A receptors (CCKARs) and leptin receptors (LRbs) interact synergistically to mediate short-term satiety. Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed by vagal afferent neurons. We sought to demonstrate that this neurotransmitter regulates CCK and leptin actions on short-term satiety. We also examined the signal transduction pathways responsible for mediati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 277 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999